
Google: Adrian Horzyk
Adrian Horzyk

horzyk@agh.edu.pl

AGH University of Science and Technology
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

Department of Biocybernetics and Biomedical Engineering

mailto:horzyk@pwsz.krosno.pl
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

2

http://home.agh.edu.pl/~horzyk/index-eng.php

Orthogonalization

Orthogonalization:
• is a clear-eyed process about what to tune and how to achieve a supposed effect.

• is the process that lets us refer to individual hyperparameters in such a way that we
can fix a selected training problem by tuning on a limited subset of hyperparameters.

• Why do we prefer to use drones over helicopters?

• Which one is easier to control and why?

• Is it easier to control a single knob changing a single parameter
or a compound joystick changing many parameters at the same time?

• Have you tried to fly a helicopter or a drone in the past? What is your experience?

3

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Car Controllers

What about the car controllers like a weal, pedals, knobs, shifts, and buttons?

Is it easier to control it (e.g. speed) when each parameter is controlled separately?

How do you prefer to control the car:

▪ set of controllers (like weal, pedals, knobs, shifts, and buttons) that control individual
parameters of the car (speed, direction, etc.) or

▪ an integrated controller (like a joystick) that can control a combination of parameters
(like speed and direction) by the same move?

4

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

5

http://home.agh.edu.pl/~horzyk/index-eng.php

Single Number Evaluation Metric

When adapting the model, we usually train it with different
hyperparameters and compare achieved precision and recall:
• Precision – defines the percentage of correct classifications, e.g. if the achieved

precision is 98% after the training is finished, and the network says that the input is
a car, there is a 98% that it really is a car.

• Recall – is the percentage of correctly classified objects (inputs) for training classes,
e.g. how many cars of all the cars from training data were correctly classified?

• Which classifier from the above three is the best one?

• It turns out that there is often a trade-off between precision and recall,
but we want to care about both of them!

• We sometimes use F1 Score that is a harmonic mean of the precision and recall.

6

Classifier Precision Recall F1 Score

Classifier A 96% 90% 92,90%

Classifier B 98% 88% 92,73%

Classifier C 94% 93% 93,50%

𝑭𝜷 =
𝟏 + 𝜷𝟐 ∙ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∙ 𝑹𝒆𝒄𝒂𝒍𝒍

𝜷𝟐 ∙ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
=

=
𝟏 + 𝜷𝟐 ∙ 𝑻𝑷

𝟏 + 𝜷𝟐 ∙ 𝑻𝑷 + 𝜷𝟐 ∙ 𝑭𝑵 + 𝑭𝑷
𝜷 - how many times recall is more important than precision

TP – true positive, FP – false positive, FN – false negative

𝑭𝟏 =
𝟐

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏−𝟏 + 𝑹𝒆𝒄𝒂𝒍𝒍−𝟏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Confusion Matrix & Popular Scores

Confusion Matrix groups the results of binary classification:
• TP (true positive) – is the number of examples correctly classified as positive.

• FP (false positive) – is the number of examples incorrectly classified as positive.

• TN (true negative) – is the number of examples correctly classified as negative.

• FN (false negative) – is the number of examples incorrectly classified as negative.

Precision = TP / (TP + FP) Recall = TP / (TP + FN) Accuracy = (TP + TN) / ALL

7

Precision – a ratio of how
many examples were
correctly classified as
positive (class A) to all
examples classified as
positive (while not all
are really positive, i.e. of
class A).

Recall – a ratio of how
many examples were
correctly classified as
positive (class A) to all
positive (class A)
examples in the
training set.

Accuracy – a ratio of how
many examples were
correctly classified to all
examples in the training
set.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Metrics and Measures of Results

The most popular measures of results are:

8

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Metrics for Comparison of Classifiers

When we have results collected by many classifiers, we need to choose
the best one, preferably using a single criterion that takes into account,
e.g. various positive or negative classifications for all classes separately:

• Compute the average error or harmonic mean for all classes and classifiers to compare them:

• Thanks to such measures, we can more easily point out the best classifier taking into account
results collected for all classes.

9

Classifier Class A Class B Class C Class D Average Harmonic Mean

A 95% 90% 94% 99% 94.5% 94.39%

B 96% 93% 97% 94% 95.0% 94.97%

C 92% 93% 95% 97% 94.3% 94.21%

D 94% 95% 99% 94% 95.5% 95.46%

E 97% 98% 95% 97% 96.8% 96.74%

F 99% 91% 96% 92% 94.5% 94.39%

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Other Criteria for Choosing Classifier

Sometimes an application must run in real-time, so we cannot
simply choose the classifier with the best accuracy, precision, or
recall, but we must take into account the classification time:
• The accuracy must be the highest but available at the acceptable time, e.g. < 100 ms

• Sometimes we must take into account additional criteria to find out the suitable
classifier for a given practical problem, e.g., we choose this one with the highest
accuracy of those, which have their classification time lower than 100 ms.

• The accuracy is optimized, while the classification time must be satisfied.

• So we have to do with multi-criteria optimization here.
10

Classifier Accuracy Classification Time

A 94.5% 70 ms

B 95.0% 95 ms

C 94.3% 35 ms

D 95.5% 240 ms

E 96.8% 980 ms

F 94.5% 60 ms

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

11

http://home.agh.edu.pl/~horzyk/index-eng.php

Early Stopping

One of the easiest method preventing overfitting is to use “early stopping” of the
training process, which is stopped when the error on the dev set starts to grow.

We save the model during training and use the last model with the least dev error.

This method does not cure overfitting but only reacts its symptoms
and prevents its occurrence when it reveals.

12

stop training

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

13

http://home.agh.edu.pl/~horzyk/index-eng.php

Data Augmentation

If we have not enough data to train the model or classes are represented by
very different number of representants, we can augment the training data of
given less numerous classes appropriately or all training data to avoid training
limitations or privileging the most numerous classes.
Augmentation (image data generation)
is a standard method implemented to
images which can be easy augmented
using the following operations:

• Shift and Rotate

• Scale (zoom in or out)

• Shearing (different parts of images)

• Flip (horizontally or vertically)

• Inverse or change colors

• Apply random jitters and perturbations

14

https://www.pyimagesearch.com/2019/07/08/keras-imagedatagenerator-and-data-augmentation/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Augmentation Prevents Overfitting

Data augmentation takes the approach of generating more training
data from existing training samples, by "augmenting" the samples
via a number of random transformations (like rotation, shifting,
zooming, flipping etc.) that yield believable-looking images.

The goal is that at training time, the model would never see
the exact same picture twice. This helps the model get exposed to
more aspects of the data and generalize better.

Thanks to it, it also prevents overfitting that is caused by having
too few samples to learn from and to cover input data space
enough representatively, rendering us unable to train a model
able to generalize to new data.

In Keras, this can be done by configuring a number of random
transformations to be performed on the images read by
the ImageDataGenerator instance.

15

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Augmentation by ImageDataGenerator

The most popular parameters of ImageDataGenerator are:

rotation_range is a value in degrees (0-180), a range within which to randomly rotate pictures.

width_shift and height_shift are ranges (as a fraction of total width or height) within which to
randomly shift pictures vertically or horizontally.

shear_range is for randomly applying shearing transformations.

zoom_range is for randomly zooming inside pictures.

horizontal_flip is for randomly flipping half of the images horizontally - relevant when there are
no assumptions of horizontal asymmetry (e.g. real-world pictures).

fill_mode is the strategy used for filling in newly created pixels, which can appear after a
rotation or a width/height shift.

16

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Image Data Generator

In Keras, the ImageDataGenerator supplies us with a rich set of transformations:

17

https://keras.io/api/preprocessing/image/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Synthetic Training Data

When dev data, testing data or real-world data differ from training data (e.g.
are noisy), we can try to artificially synthetize new training data that will be
more similar to real-world data (noise data augmentation), e.g.:

• add typical noise to training data.

• blur training data.

• add some distortions to training data.

Such techniques allow us to overcome the Data Mismatch Problem between
training data and real-world noisy data.

When dealing with texts, we can use various text generators or transformers
like SynthText or TextRenderer used e.g. by CAPTCHA or HIP.

18

https://github.com/ankush-me/SynthText
https://github.com/contentful/rich-text-renderer.py
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

CAPTCHA & HIP

Web services are often protected with a challenge that's supposed to be easy
for people to solve, but difficult for computers. Such a challenge is often called:

• CAPTCHA (Completely Automated Public Turing test to tell Computers and
Humans Apart) or

• HIP (Human Interactive Proof).

HIPs are used for many purposes, such as
to reduce email and blog spam and prevent
brute-force attacks on web site passwords.

19

http://home.agh.edu.pl/~horzyk/index.php
http://home.agh.edu.pl/~horzyk/index.php

20

http://home.agh.edu.pl/~horzyk/index-eng.php

Local Minima vs. Global Minimum

A loss function can have many local minima, but we are interested in
finding the global minimum do reduce training error as much as possible:

• We must avoid stacking in local minima or saddle points of the cost function.

• We can use such loss functions that are not prone to local minima.

• Normalization speeds up the training and better avoids local minima.

• We can try to escape from local minima using

✓ smaller mini-batches,

✓ momentum,

✓ RMSprop,

✓ Adam optimizer etc.

• The gradient in any local minimum
or saddle point is always equal to 0!

• We can also start training process many times
starting from different random weights.

• We can use activation functions without plateau!

21

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Saddle Points and Plateaus

Even if the loss function has no local minima, it can have saddle points
where the gradient algorithm can stack because the gradient
is close or equal to 0:

• The loss function surface can be
locally flat.

• We want to escape from such
local plateaus (flat areas) where
the gradients are very small.

22

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

23

http://home.agh.edu.pl/~horzyk/index-eng.php

Learning Rate Decay

To avoid oscillation close to the minimum of the cost function,
we should use non-constant learning rate, but its decay, e.g.:
• We can decay the learning rate along with the training epochs:

• 𝜶 =
𝜶𝟎

𝟏+𝒅𝒆𝒄𝒂𝒚𝒓𝒂𝒕𝒆 ∙ 𝒏𝒐𝒆𝒑𝒐𝒄𝒉

• We can use an exponential learning rate decay:

• 𝜶 = 𝜶𝟎 ∙ 𝒆
−𝒅𝒆𝒄𝒂𝒚𝒓𝒂𝒕𝒆 ∙ 𝒏𝒐𝒆𝒑𝒐𝒄𝒉

• Another way to decay a learning rate:

• 𝜶 =
𝒌∙𝜶𝟎

𝒏𝒐𝒆𝒑𝒐𝒄𝒉

24

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Learning Rate Decay

To avoid oscillation close to the minimum of the cost function,
we should use non-constant learning rate, but its decay, e.g.:
• We can also use a staircase decay, decreasing a learning rate after a given number of

epochs by half or in another way:

25

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

26

http://home.agh.edu.pl/~horzyk/index-eng.php

Initialization of Weights

We initialize weights with small random values:
• to put the values of activation functions in the range of the largest variance,

which speeds up the training process.

• taking into account the number neurons 𝒏 𝒍−𝟏 of the previous layer,

e.g. for tanh:
𝟏

𝒏 𝒍−𝟏 (popular Xavier initialization) or
𝟐

𝒏 𝒍−𝟏 +𝒏 𝒍 ,

multiplying the random numbers from the range of 0 and 1 by such a factor.

27

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

28

http://home.agh.edu.pl/~horzyk/index-eng.php

Data Standardization

Standardization is an operation commonly used in statistics,
which consists in rescaling data of each element of the set against
the mean values and standard deviation in accordance with the
formula:

x = [x1, x2, …, xN] – is the N-element vector of the source data,

y = [y1, y2, …, yN] – is the N-element data vector after standardization,

m – is the average value determined from these data,

 – is the standard deviation.

As a result of standardization, we get a vector of features which
average value is zero, while the standard deviation is equal to one.

It should not be used for data about standard deviation close to zero!

29

𝒚𝒊 =
𝒙𝒊 −𝒎

𝝈

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Data Normalization

Normalization is the data scaling with respect to extreme values
(min and max) of a given data vector, usually to the range [0, 1]
(sometimes to [-1, 1]) according to the following formula:

x = [x1, x2, …, xN] – is the N-element vector of the source data,

y = [y1, y2, …, yN] – is the N-element data vector after normalization.

Normalization is sensitive to outliers and large scatter
because then the right data will be squeezed in a narrow range,
which can significantly hamper their discrimination!

Normalization is sometimes necessary to use a method that requires input or
output data to fall within a certain range, e.g. using sigmoidal functions or
hyperbolic tangent.

30

𝒚𝒊 =
𝒙𝒊 − 𝒙𝒎𝒊𝒏

𝒙𝒎𝒂𝒙 − 𝒙𝒎𝒊𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Standardization and Normalization

of Training Data Sets

Standardization and normalization:
• make data of different attributes (different ranges) comparable and not favourited or

neglected during the training process. Therefore, we scale all training, validating
(dev), and testing data inside the same normalized ranges.

• We also must not forget to scale testing data using the same 𝝁 and 𝝈𝟐.

𝝁 =
𝟏

𝒎

𝒊=𝟏

𝒎

𝒙 𝒊 𝒙 ≔ 𝒙 − 𝝁

𝝈𝟐 =
𝟏

𝒎

𝒊=𝟏

𝒎

𝒙 𝒊 ∗𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒘𝒊𝒔𝒆 𝒙
𝒊 𝒙 ≔ 𝒙/𝝈

The training process is faster and better when training data are normalized! 31

NormalizedUnnormalized

NormalizedUnnormalized

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Standardization and

Batch Normalization (Batch Norm)

We normalize data to make their gradients comparable and to speed up the training process:

• We compute mean:

• 𝝁 =
𝟏

𝒎
σ𝒊 𝒛

𝒊

• and variance:

• 𝝈𝟐 =
𝟏

𝒎
σ𝒊 𝒛

𝒊 − 𝝁
𝟐

• to normalize:

• 𝒛 𝒊 = 𝜸 ∙ 𝒛𝒏𝒐𝒓𝒎
𝒊

+ 𝜷 where 𝒛𝒏𝒐𝒓𝒎
𝒊

=
𝒛 𝒊 −𝝁

𝝈𝟐+𝜺

where 𝜷, 𝜸 are trainable parameters (𝜷 𝒍 ∶= 𝜷 𝒍 − 𝜶 ∙ 𝒅𝜷 𝒍 , 𝜸 𝒍 ∶= 𝜸 𝒍 − 𝜶 ∙ 𝒅𝜸 𝒍) of
the model, so we use gradients to update them in the same way as weights and biases.

• If 𝜸 = 𝝈𝟐 + 𝜺 and 𝜷 = 𝝁, then 𝒛 𝒊 = 𝒛 𝒊

• so the sequence of input data processing with normalization is as follows:

• 𝒙 𝒕
→ 𝒛 𝟏

→ 𝒛 𝟏
→ 𝒂 𝟏 = 𝒈 𝟏 𝒛 𝟏

→ 𝒛 𝟐
→ 𝒛 𝟐

→ 𝒂 𝟐 = 𝒈 𝟐 𝒛 𝟐 …

• and we apply it usually for 𝒕 ∈ 𝟏,… , 𝑻 minibatches subsequently.

• Thus, we have 𝑾 𝒍 , 𝒃 𝒍 , 𝜸 𝒍 , and 𝜷 𝒍 parameters for each layer, but we do

not need to use 𝒃 𝒍 , because the shifting function is supplied by 𝜷 𝒍 .

. 32

Batch Norm has a slight
regularization effect,
the less the bigger are
the mini-batches.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Batch Normalization and

Standardization

How do we use normalization inside layers in Keras models?

We simply add it before the layer where it should be used when defining the model:

It usually helps to improve the model:

We can also use standardize our data using the following formulas, which transforms
the train and test datasets using mean and standard deviation:

33

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

34

http://home.agh.edu.pl/~horzyk/index-eng.php

On-line and Batch Training

When using a gradient descent algorithm, we have to decide after what number
of presented training examples parameters (weights and biases) will be updated,
and due to this number, we define:

• Stochastic (on-line) training – when we update parameters (e.g. weights) immediately
after the presentation of each training example.
In this case, training process might be unstable.

• Batch (off-line) training – when we update parameters (e.g. weights) only once
after the presentation of all training examples.
In this case, training process might take very long time and stuck in local minima or
saddle points.

• Mini-batch training – when we update parameters after the presentation of
a subset of training examples consisting of a defined number of training examples.
In this case, training process is a compromise between the stability and speed,
much better avoiding to stuck in local minima, so this option is recommended.
If the number of examples is too small, the training process is more unstable.
If the number of examples is too big, the training process is longer but more stable
and robust.
The mini-batch size is one of the hyperparameters of the model.

35

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Mini-batches used in Deep Learning

Training examples are represented as a set of m pairs which are trained and update parameters one
after another in on-line training (stochastic gradient descent):

𝑿,𝒀 = 𝒙(𝟏), 𝒚(𝟏) , 𝒙(𝟐), 𝒚(𝟐) , … , 𝒙(𝒎), 𝒚(𝒎)

Hence, we can consider two big matrices storing input data X and output predictions Y,
which can be presented and trained as one batch (batch gradient descent):

𝑿 = 𝒙(𝟏), 𝒙(𝟐), 𝒙(𝟑), … , 𝒙 𝟏𝟎𝟎𝟎 , … , 𝒙 𝟐𝟎𝟎𝟎 , … , 𝒙 𝟑𝟎𝟎𝟎 , … , 𝒙(𝒎)

𝒀 = 𝒚(𝟏), 𝒚(𝟐), 𝒚(𝟑), … , 𝒚 𝟏𝟎𝟎𝟎 , … , 𝒚 𝟐𝟎𝟎𝟎 , … , 𝒚 𝟑𝟎𝟎𝟎 , … , 𝒚(𝒎)

Or we can divide them to mini-batches (mini-batch gradient descent) and update the network
parameters after each mini-batch of training examples presentation:

𝑿 = 𝒙(𝟏), 𝒙(𝟐), 𝒙(𝟑), … , 𝒙 𝟏𝟎𝟎𝟎 | 𝒙 𝟏𝟎𝟎𝟏 , … , 𝒙 𝟐𝟎𝟎𝟎 | 𝒙 𝟐𝟎𝟎𝟏 , … , 𝒙 𝟑𝟎𝟎𝟎 | 𝒙 𝟑𝟎𝟎𝟏 , … , 𝒙(𝒎)

𝑿 𝟏 𝑿 𝟐 𝑿 𝟑 𝑿 𝒎/𝒃𝒂𝒕𝒄𝒉𝒔𝒊𝒛𝒆

𝒀 = 𝒚(𝟏), 𝒚(𝟐), 𝒚(𝟑), … , 𝒚 𝟏𝟎𝟎𝟎 | 𝒚 𝟏𝟎𝟎𝟏 , … , 𝒚 𝟐𝟎𝟎𝟎 | 𝒚 𝟐𝟎𝟎𝟏 , … , 𝒚 𝟑𝟎𝟎𝟎 | 𝒚 𝟑𝟎𝟎𝟏 , … , 𝒚(𝒎)

𝒀 𝟏 𝒀 𝟐 𝒀 𝟑 𝒀 𝒎/𝒃𝒂𝒕𝒄𝒉𝒔𝒊𝒛𝒆

𝑿,𝒀 = 𝑿 𝟏 , 𝒀 𝟏 , 𝑿 𝟐 , 𝒀 𝟐 , … , 𝑿 𝒎/𝒃𝒂𝒕𝒄𝒉𝒔𝒊𝒛𝒆 , 𝒀 𝒎/𝒃𝒂𝒕𝒄𝒉𝒔𝒊𝒛𝒆

If m= 20.000.000 training examples and the mini-batch size is 1000, we get 20.000 mini-batches
(i.e. training steps for each full training dataset presentation, called training epoch),

where T = 𝒎/𝒃𝒂𝒕𝒄𝒉𝒔𝒊𝒛𝒆.

In deep learning, we use mini-batches to speed up training and avoid stacking in saddle points.
36

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Graphical Interpretation of Mini-batches

Convergence of the training process depends on the size of mini-batches.

37

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Mini-batch Gradient Descent

To optimize computation speed, the mini-batch size (mbs) is
usually set according to the number/multiplication of parallel
cores in the GPU unit, so it is typically a power of two:

• mbs = 32, 64, 128, 256, 512, 1024, or 2048

because then such mini-batches can be processed
time-efficiently in one or more parallel steps
dependently of the number of parallel cores of the GPU.

If mbs = m, we get Batch Gradient Descent typically used for
small training dataset (a few thousands of training examples).

If mbs = 1, we get Stochastic Gradient Descent.

Therefore, instead of looping over every training example
(like in stochastic training) or stacking all training examples
into two big matrices X and Y,
we loop over the number of mini-batches, computing
outputs, errors, gradients, and updates of parameters
(weights and biases):

• One training epoch consists of T training steps over
the mini-batches.

• Mini-batches are used for big training dataset
(ten or hundred thousands and millions of training
examples) to accelerate computation speed.

38

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/lectures/ahdydkbcidmb.php
file:///C:/Users/Adrian/Downloads/bmm615.pdf
file:///C:/Users/Adrian/Downloads/bmm615.pdf
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
http://home.agh.edu.pl/~horzyk/lectures/ahdydkbcidmb.php
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
https://developer.nvidia.com/discover/convolutional-neural-network
https://jupyter.org/
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
https://jupyter.org/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

